| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Novobiocin

Page history last edited by PBworks 16 years, 10 months ago


History

Novobiocin is a coumarin antibiotic obtained from Streptomyces niveus and other Streptomyces species. Novobiocin is useful primarily in infections involving staphylococci, and other gram-positive organisms. It acts by inhibiting the initiation of DNA replication in bacterial and mammanlian cells. Evidences indicated that Novobiocin blocks prokaryotic DNA gyrase and eukaryotic II topoisomerase, enzymes that relax super-coiled DNA and are crucial for DNA replication.1

 

Novobiocin

 

UIPAC Name4-Hydroxy-3-4-hydroxy-3-(3-methylbut-2-enyl)benzamido-8-methylcoumarin-7-yl 3-O-carbamoyl-5,5-di-C-methyl-α-l-lyxofuranoside
CAS Number303-81-1
Molecular Mass612.624 g / mol
Chemical FormularC31H36N2O11

 

 

 

 

 

 

 

 

 

 

!

!

Biosynthesis

The substituted coumarin (ring B, red) and the 4-OH benzoyl moiety (ring A, aqua) in novobiocin were derived from Image-Tyr based on earlier labeling studies. β-OH-Tyr is proposed to be a common intermediate in these two biosynthetic pathways.2

 

 

 

NovH is a Image-Tyr specific didomain NRPS that generates the Image-tyrosyl-S-NovH intermediate. NovH, isolated from E. coli is primed by a PPTase with CoA. The A domain activates Image-Tyr as Image-tyrosyl-AMP and then transfers the Image-tyrosyl group to the HS-pant-PCP domain of NovH through thioester formation.3

 

Image-tyrosyl-S-NovH is then function as a cytochrome P450 monooxygenase that hydroxylates the β-carbon of the tethered Image-tyrosyl group on NovH. While the substrate Image-tyrosyl-S-NovH provides two electrons for a single round of the hydroxylation reaction, the other two electrons needed to reduce the oxygen atom are provided by NADPH via two-electron transfer effected by electron transfer proteins ferrodoxin (Fd) and ferrodoxin reductase (Fd Red).3 The electron transfer route is from NADPH→FAD in Fd Red→Fe–S center in Fd→Heme in NovI→oxygen.

 

Both NovJ and NovK are similar to 3-keto-ACP reductase and they may form a heterodimer and operate in the reverse direction to oxidize 3-OH to 3-keto. NovO is similar to some quinone C-methyltransferases 3 but the timing of methylation is not clear. NovC resembles flavin-dependent monooxygenases (35 and 32% similarity to dimethylaniline and cyclohexanone monooxygenases, respectively) 3 and is proposed to hydroxylate the ortho position of the phenyl ring. The nucleophilic attack of the ortho hydroxyl group on the thioester carbonyl center would release the coumarin ring and regenerate NovH. Ring B is then synthesized.

 

 

 

 

Synthesis

 

 

Mechanism of action

E.Coli DNA gyrase utilizes ATP to catalyze the negative supercoiling, or under-twisting, of duplex DNA. The energy coupling components of the supercoiling reaction includes 1) the DNA-dependent hydrolysis that converts ATP to ADP and Pi, and 2) the gyrase cleavage reaction that targets the specified DNA site. The two activities are induced by treating the stable gyrase-DNA complex trapped by the inihibitor oxolinic acid with sodium dodecyl sulfate (SDS or Sulphate). 4 Novobiocin competes with ATP in the ATPase and supercoiling assays, hence Novobiocin prevents the ATP from shifting the primary cleavage site on ColE1 DNA by places the site of action of the antibiotics at a reaction step prior to ATP hydrolysis and blocks the binding of ATP. 4 Such a simple mechanism of action represents for all effects of the drugs on DNA gyrase.

 

Clinical Use

Due to factors as low solubility, poor pharmacokinetics, and limited activity agasinst Gram-negative bacteria, the clinical usage of Novobiocin is not achieved. 5 Therefore, it is of interest to study the novobiocin biosynthetic pathway in order to generate analogs with enhanced solubility and pharmacokinetic properties while maintaining the gyrase inhibitory properties.

 

References

 

1 J.C. D'Halluin, M. Milleville, and P. Boulanger. "Effect of Novobiocin on adenovirus DNA synthesis and encapsidation". Nucleic Acids Research 1980; 8: 1625-1641

2 M. Steffensky, S.M. Li and L. Heide, "Cloning, overexpression, and purification of novobiocic acid synthetase from Streptomyces spheroides " NCIB 11891. J. Biol. Chem. 275 (2000), pp. 21754–21760.

3 Huawei Chen and Christopher T. Walsh, "Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI" Chemistry and Biology; 2001; 8: 301-312

4 K. Scheirer and N. P. Higgins. "The DAN Cleavage Reaction of DNA Gyrase " The Journal of Biological Chemistry; 1997; 272 (43): 27202-27209

5 N Pi, C. L. F. Meyers, M. Pacholec, C. T. Walsh, and J. A. Leary. "Mass spectrometric characterization of a three-enzyme tandem reacton for assembly and modification of the novobiocin skeleton" PNAS 2004;101;10036-10041

Comments (0)

You don't have permission to comment on this page.